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ABSTRACT
We extend the framework of mixed multi-unit combinatorial
auctions, which deals with transformations of goods rather
than only with atomic goods, by allowing time constraints
in the bids offering these transformations. This way, bidders
can express their scheduling preferences, while previously the
auctioneer alone could decide the order of transformations.
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1. INTRODUCTION
Cerquides et al. [1] have proposed an extension of the stan-
dard combinatorial auction model, called mixed multi-unit
combinatorial auctions (or simply mixed auctions). In
a mixed auction, bidders can offer transformations, consisting
of a set of input goods and a set of output goods, rather than
just plain goods. Bidding for such a transformation means
declaring that one is willing to deliver the specified output
goods after having received the input goods, for the price
specified by the bid. Solving a mixed auction means choosing
a sequence of transformations that satisfies the constraints
encoded by the bids, that produces the goods required by the
auctioneer from those he holds initially, and that maximizes
the amount of money collected from the bidders (or minimizes
the amount paid out by the auctioneer). Mixed auctions
extend several other types of combinatorial auctions: direct
auctions, reverse auctions, and combinatorial exchanges. A
promising application is supply chain formation.

We propose extending the framework of mixed auctions by
allowing bidders to specify constraints regarding the times
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at which they perform the transformations offered in their
bids. The motivation for this extension is that, in a com-
plex economy, the bidders (service providers) themselves
may need services from others and have their own supply
chains, so the bidders may have preferences over the timing
of transformations and over their relative ordering. A notion
of time is already implicit in the original framework as far
as the auctioneer is concerned, who builds a sequence of
transformations, but this is not the case for the bidders.

Our contribution covers four types of time constraints:
• Relative time points: associate each transformation

with a time point and allow bidders to express con-
straints regarding their relative ordering, e.g., transfor-
mation X must be executed before Y .

• Absolute time points: additionally allow references to
absolute time, e.g., execute X at time 15, or at most
3 time units after Y .

• Intervals: associate transformations with intervals and
specify constraints, e.g., X must be executed during Y .

• Intervals with absolute durations: allow intervals with
absolute time, e.g., X should take at least 5 time units.

These constraint types can be freely mixed to, for instance,
express an interval taking place after a time point.

Furthermore, it is possible to model soft constraints, allow-
ing bidders to offer discounts in return for satisfying certain
time constraints, and to model the fact that an auctioneer
may sometimes be able to quantify the monetary benefit
resulting from a shorter supply chain.

For a full exposition, see [3, Ch. 6].

2. CORE BIDDING LANGUAGE
Let G be the finite set of all types of goods considered.
A transformation is a pair (I,O) ∈ N

G × N
G. An agent

offering such a transformation declares that, when provided
with the multiset of goods I, he can deliver the multiset of
goods O. Let T be a finite (but big enough) set of time
point identifiers. These time points are to be thought of
merely as identifiers, not as variables having an actual value.
Agents negotiate over sets of transformations with time point
identifiers D ⊂ N

G ×N
G ×T , which we can write in the form

D = {(I1,O1, τ1), . . . , (I�,O�, τ �)}.
For example, {({}, {q}, τ1), ({r}, {s}, τ2)} means that the
agent in question is able to deliver q without any input at
some time point τ1, and to deliver s if provided with r at
some time point τ2.

A time line Σ (for a given bidder) is a finite sequence of
transformations and “clock ticks” c (when no transformation
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is allocated to the bidder). That is, Σ ∈ (NG × N
G ∪ {c})∗.

A valuation v maps a time line Σ to a real number p.
Intuitively, v(Σ) = p means that an agent with valuation
v is willing to make a payment of p for getting the task of
performing transformations according to the time line Σ (p
is usually negative, so the agent is being paid). We write
v(Σ) = ⊥ if v is undefined for Σ, i.e., the agent would be
unable to accept the corresponding deal. For example, the
valuation v given by

v(({oven, dough}, {oven, cake})) = −2

v(({oven, dough}, {oven, cake}); ({}, {bread})) = −3

v(({}, {bread}); ({oven, dough}, {oven, cake})) = ⊥

expresses that for two dollars I could produce a cake if given
an oven and dough, also returning the oven; for another
dollar I could do the same and afterwards give you a bread
without any input; but I could not do it the other way round.

A valuation v uses relative time if for all Σ we have that
v(Σ) = v(Σ − c), where Σ − c stands for Σ with all clock
ticks c removed. Otherwise v is said to use absolute time.
That is, in the context of relative time, valuations depend
only on the relative ordering of the transformations.

An atomic bid bid(D, p) specifies a finite set of finite
transformations with time points and a price. For complex
bids, we restrict ourselves to the xor-language, which, for
multi-unit mixed auctions, fully expresses most (if not all)
intuitively sensible valuations [1]. Our framework can easily
be extended to also handle the or-operator. An xor-bid,

Bid = bid(D1, p1)xor . . .xorbid(Dn, pn),

states that the bidder is willing to perform at most one of
the Dj and pay the associated pj .

The atomic constraints for relative time are of the form
τ < τ ′; and for absolute time, with τ, τ ′ ∈ T , ξ, ξ′ ∈ N:

τ = ξ τ < ξ τ > ξ

τ + ξ < τ ′ + ξ′ τ + ξ = τ ′ + ξ′

As an example, the atomic bid with time constraint

bid({ ({oven, dough}, {oven, cake}, τ1),

({}, {bread}, τ2)},−3)
τ1 < τ2

expresses the above fact that I am willing to sell you the
bread only after I have sold you the cake.

Time constraint formulas are of the form ϕ = γ1 ∧· · ·∧
γν with atomic constraints γι. A bidder submits a bid Bid
together with a time constraint formula ϕ, expressing that
he is willing to perform according to Bid, but only under the
condition that ϕ is satisfied.

For the formal semantics of this bidding language, refer
to [3, Ch. 6].

3. SYNTACTIC EXTENSIONS
The time constraint language may seem limited, allowing only
conjunctions of atomic constraints. However, additional ex-
pressive power can be “borrowed” from the bidding language,
as with the following three extensions.

While time constraints in the core bidding language are
hard, soft constraints (associated with costs) can be ex-
pressed as well. For example, a bidder may want to bid on
(I1,O1) and (I2,O2) for price p and offer a discount, i.e.,

raise his bid by δ, if he gets to do the first before the second:

bid({(I1,O1, τ1), (I2,O2, τ2)}, p) (τ1 < τ2, δ)

This expression can be translated:

bid({(I1,O1, ϑ1), (I2,O2, ϑ2)}, p)

xorbid({(I1,O1, ζ1), (I2,O2, ζ2)}, p + δ)
ζ1 < ζ2

Another bidder may want to use a disjunctive constraint
and offer (I1,O1), (I2,O2) and (I3,O3) for price p, where
the third should take place after the first or the second, i.e.,

bid({(I1,O1, τ1), (I2,O2, τ2), (I3,O3, τ3)}, p)

(τ1 < τ3) ∨ (τ2 < τ3)

This can be translated in a similar way as above.
Finally, we may want to use intervals rather than just

time points to allow transformations to overlap or to have
different durations. A transformation with start time and
end time can be rewritten as follows:

(I,O, [τ, τ ′]) �
(I, ∅, τ), (∅,O, τ ′)

τ < τ ′

The usual interval relations can be rewritten as follows:

[τ1, τ
′
1] before [τ2, τ

′
2] � τ ′

1 < τ2

[τ1, τ
′
1] overlaps [τ2, τ

′
2] � τ1 < τ2 ∧ τ ′

1 < τ ′
2

[τ1, τ
′
1] during [τ2, τ

′
2] � τ2 < τ1 ∧ τ ′

1 < τ2

Absolute restrictions on the durations can also be used:

duration([τ, τ ′]) ◦ ξ � τ ′ ◦ τ + ξ, ◦ ∈ {<, >, =}
In [3, Ch. 6] we give the full details of these translations,

as well as a way to model the auctioneer’s monetary benefit
resulting from a shorter supply chain.

4. COMPUTATIONAL ASPECTS
Concerning computational complexity, as in the original
model by Cerquides et al. [1], the winner determination prob-
lem for mixed auctions with time constraints is NP-complete.
Our extension is modular in a way that facilitates transfer of
analytical results. For example, Fionda and Greco [2] recently
started charting the tractability frontier for a slightly simpli-
fied version of the original framework, using various criteria
to restrict the class of allowed bids. Their results concerning
the xor-language still hold in our extended framework.

In [3, Ch. 6] we have formulated an integer program
for solving a mixed auction with time constraints, build-
ing upon the original algorithm without time constraints.
Like the theoretical framework, this extension is modular,
facilitating integration with other extensions and algorithmic
optimizations. An empirical evaluation is left for future work.
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